1,598 research outputs found

    Extracting entangled qubits from Majorana fermions in quantum dot chains through the measurement of parity

    Full text link
    We propose a scheme for extracting entangled charge qubits from quantum-dot chains that support zero-energy edge modes. The edge mode is composed of Majorana fermions localized at the ends of each chain. The qubit, logically encoded in double quantum dots, can be manipulated through tunneling and pairing interactions between them. The detailed form of the entangled state depends on both the parity measurement (an even or odd number) of the boundary-site electrons in each chain and the teleportation between the chains. The parity measurement is realized through the dispersive coupling of coherent-state microwave photons to the boundary sites, while the teleportation is performed via Bell measurements. Our scheme illustrates \emph{localizable entanglement} in a fermionic system, which serves feasibly as a quantum repeater under realistic experimental conditions, as it allows for finite temperature effect and is robust against disorders, decoherence and quasi-particle poisoning.Comment: Accepted by Scientific Report

    Load-balanced parallel banded-system solvers

    Get PDF
    AbstractSolving banded systems is important in the applications of science and engineering. This paper presents a load-balancing strategy for solving banded systems in parallel when the number of processors used is small. An optimization-based load-balancing analysis is given to determine how many loads should be assigned to each processor in order to minimize the time requirement. Some experimentations are carried out on the nCUBE 2E multiprocessor to demonstrate the speedup advantage of the proposed load-balancing strategy. The speedup improvement ratio ranges from 47% to 66% (from 12% to 24%) when using 4 (8) processors

    A Hop-Count Analysis Scheme for Avoiding Wormhole Attacks in MANET

    Get PDF
    MANET, due to the nature of wireless transmission, has more security issues compared to wired environments. A specific type of attack, the Wormhole attack does not require exploiting any nodes in the network and can interfere with the route establishment process. Instead of detecting wormholes from the role of administrators as in previous methods, we implement a new protocol, MHA, using a hop-count analysis from the viewpoint of users without any special environment assumptions. We also discuss previous works which require the role of administrator and their reliance on impractical assumptions, thus showing the advantages of MHA

    Network partitioning into tree hierarchies

    Full text link
    This paper addresses the problem of partitioning a circuit into a tree hierarchy with an objective of minimizing a glo-bal interconnection cost. An efficient and effective algo-rithm is necessary when the circuit is huge and the tree has many levels of hierarchy. We propose a heuristic algorithm for improving a partition with respect to a given tree struc-ture. The algorithm utilizes the tree hierarchy as an efficient mechanism for iterative improvement. We also extend the tree hierarchy to apply a multi-phase partitioning approach. Experimental results show that the algorithm significantly improves the initial partitions produced by multiway parti-tioning and by recursive partitioning. 1
    • …
    corecore